El Portal de Urología en Español para profesionales

Búsqueda personalizada


Documento sin título


Los Blogs de UroPortal:
Novedades en UroPortal
Vídeos Urología
Presentaciones Urología



Este mes en... Xenotransplantation

Sumarios de Revistas

Este mes en... Xenotransplantation:

  • Effects of encapsulated porcine islets on glucose and C-peptide concentrations in diabetic nude mice 6 months after intraperitoneal transplantation
    Background In patients with type 1 diabetes, allogeneic islet transplantation can provide normal HbA1c concentrations, but it requires immunosuppression. Transplanting encapsulated islets into the peritoneal cavity could reduce or eliminate the need for immunosuppression. One of the uncertain features of intraperitoneal islet transplantation is the difficulty of measuring C-peptide concentrations in peripheral blood, which is often used for the marker of islet function. We hypothesized that secreted C-peptide from intraperitoneally transplanted islets was mostly consumed in the peritoneal cavity, which resulted in low C-peptide concentrations in peripheral blood. Methods In each of two experiments, encapsulated neonatal porcine islets were intraperitoneally transplanted into four nude mice with streptozotocin-induced diabetes. Three diabetic nude mice without transplanted islets were used as diabetic controls, and three untreated healthy nude mice were used as normal controls. Islet functions were monitored for 2 months in the first experiment and 6 months in the second experiment. Encapsulated islets were retrieved after each experiment and evaluated by fluorescein diacetate/propidium iodide tests for the viability and static glucose-stimulated insulin release tests for the function. C-peptide concentrations from the blood and from the intraperitoneal cavity at 6 months were compared. Results In both experiments, diabetes was reversed in all transplanted mice, and oral glucose tolerance test showed improved profiles. In general, retrieved islets were viable and functional. However, blood porcine C-peptide concentrations were low at both 2 and 6 months, and concentrations in the ascites of peritoneal cavity were 40 times as high as those in blood. Conclusions The peripheral blood sampling for c-peptide, though highly informative in vascularized grafts, may not be the primary tool for monitoring the health and function of encapsulated products when transplanted into intraperitoneal cavity. Our results might explain the clinical feature of the low C-peptide blood concentrations after successful intraperitoneal encapsulated islet transplantation.
  • Long-term safety from transmission of porcine endogenous retrovirus after pig-to-non-human primate corneal transplantation
    Background The risk of xenozoonosis mainly by porcine endogenous retrovirus (PERV) has been considered as one of the main hurdles in xenotransplantation and therefore should be elucidated prior to the clinical use of porcine corneal grafts. Accordingly, an investigation was performed to analyze the infectivity of PERVs from porcine keratocytes to human cells, and the long-term risk of transmission of PERVs was determined using pig-to-non-human primate (NHP) corneal transplantation models. Methods The infectivity of PERVs from the SNU miniature pig keratocytes was investigated by coculture with a human embryonic kidney cell line. Twenty-two rhesus macaques underwent xenocorneal transplantation as follows: (i) group 1 (n=4): anterior lamellar keratoplasty (LKP) with freshly preserved porcine corneas, (ii) group 2 (n=5): anterior LKP with decellularized porcine corneas followed by penetrating keratoplasty (PKP) with allografts, (iii) group 3 (n=3): PKP under steroid-based immunosuppression, (iv) group 4 (n=4): PKP under anti-CD154 antibody-based immunosuppression, (v) group 5 (n=4): deep anterior LKP with freshly preserved porcine corneas under anti-CD40 antibody-based immunosuppression, and (vi) group 6 (n=2): PKP under anti-CD40 antibody-based immunosuppression. Postoperative blood samples were serially collected, and tissue samples were obtained from thirteen different organs at the end of each experiment. The existence of PERV DNA and RNA was investigated using PCR and RT-PCR. Results Using two independent in vitro infectivity tests, neither PERV pol nor pig mitochondrial cytochrome oxidase II was detected after 41 and 92 days of coculture, respectively. After xenocorneal transplantation, a total of 257 serial peripheral blood mononuclear cell samples, 34 serial plasma samples, and 282 tissue samples were obtained from the NHP recipients up to 1176 days post-transplantation. No PERV transmission was evident in any samples. Conclusions Within the limits of this study, there is no evidence to support any risk of PERV transmission from porcine corneal tissues to NHP recipients, despite the existence of PERV-expressing cells in porcine corneas.
  • Angiopoietin-1 and angiopoietin-2 protect porcine iliac endothelial cells from human antibody-mediated complement-dependent cytotoxicity through phosphatidylinositide 3-kinase/AKT pathway activation
    Cytokines play crucial roles in inflammation, but their role in xenotransplantation remains elusive. We assessed the role of several cytokines using an in vitro model of human antibody-mediated complement-dependent cytotoxicity (CDC). Recombinant human angiopoietin-1 (Ang-1) protected porcine iliac endothelial cells (PIECs) from human antibody-mediated CDC. Interestingly, human angiopoietin-2 (Ang-2) had a similar protective effect on PIECs. By flow cytometry analysis, the extent of human IgM and IgG binding to PIECs did not decrease when PIECs were exposed to Ang-1/Ang-2. The mRNA level of complement regulators (CD46, CD55, CD59) was not upregulated in PIECs treated with Ang-1/Ang-2, both of which activated the PI3K/AKT pathway in PIECs. Wortmannin, which inhibits phosphatidylinositide 3-kinase (PI3K), suppressed Ang-1/Ang-2-induced AKT phosphorylation and consequent Ang-1/Ang-2-mediated protection of PIECs in human antibody-mediated CDC model. Moreover, dominant negative AKT also suppressed Ang-1/Ang-2-mediated protection of PIECs in this model. In conclusion, our data suggest that human Ang-1/Ang-2 induces the protection of PIECs from human antibody-mediated CDC by activating the PI3K/AKT pathway. Ang-1/Ang-2 is likely to protect porcine endothelial cells and may be beneficial in xenotransplantation research.
  • Characterization of porcine endogenous retrovirus expression in neonatal and adult pig pancreatic islets
    Background Pig islets represent an alternative to the current modes of treatment for patients with diabetes. However, the concerns over pathogen transmission including that of PERV limit their immediate, widespread usage in humans. It has been previously demonstrated that PERV copy number and particularly expression levels can vary considerably between individuals and within different tissues of a single animal. In general, expression levels have been found to be particularly low in the pancreas compared to other porcine tissues suggesting a reduced risk associated with the use of this tissue. Data regarding this crucial aspect, however, remain limited and little is known about PERV status of islets themselves, which represent the final product to be transplanted. In addition, comparative analysis of the PERV status of neonatal piglets with adults is important as they are increasingly considered as potential islet donors for xenotransplantation. Methods Tissue samples from 51 neonatal piglets (age between 14 and 21 days) and 29 adult pigs were collected from Belgian landrace pigs used for pancreas procurement and islet isolation. Tissue biopsies were used to extract DNA for PERV copy number quantification by qPCR and RNA for PERV expression by qRT-PCR. Results As expected, PERV expression demonstrated great variation and was significantly lower in pancreas compared to other tissues. More importantly, PERV RNA expression was found to be specifically enriched in pancreatic islets reaching values similar to those found in other tissues such as liver and kidney. Interestingly, this expression was not coupled with the detection of reverse transcriptase in islet cultures or indeed detection of PERV virus. Lung, spleen, and lymph node consistently showed the highest levels of PERV expression. Comparison of PERV in neonatal and adult pigs showed that copy number did not vary significantly from birth to adulthood. PERV expression on the other hand was significantly lower in neonatal pig islets compared to adult islets and did not increase over the period of culture. Conclusion Our study confirms the low level of PERV expression in whole pancreas in a large population of both neonatal and adult pigs (n=80). The level of PERV expression was however higher in the endocrine tissue than in the exocrine cells. There was no correlation between PERV status in donor PBMCs and islet cells, and no evidence of active replication in in vitro regardless of PERV expression in islet cells. Moreover, neonatal pig islets were found to have significantly lower PERV expression compared to adult islets. Neonatal islets have been suggested as the best choice for xenotransplantation in terms of economic and procurement considerations; the PERV status reported here would also potentially support their use.
  • Human galectin-9 on the porcine cells affects the cytotoxic activity of M1-differentiated THP-1 cells through inducing a shift in M2-differentiated THP-1 cells
    Background In xenotransplantation, immune rejection by macrophages occurs rapidly and remains a major obstacle. Studies to control immune rejection in macrophages have been continuing to date. Recent studies have reported that human galectin-9 (hGal-9) can regulate the function of regulatory T cells (Treg), as well as cytotoxicity T cells (CTL) and natural killer cells (NK). Although the effect of hGal-9 on lymphocytes has been well studied, the relationship between hGal-9 and myeloid cells has been scarcely studied. Methods To confirm the decreased cytotoxic activity effect by hGal-9 in M1-differentiated THP-1 cells, we established the hGal-9 expressing transgenic porcine cell line. hGal-9 siRNA was transfected to transgenic cells and recombinant hGal-9 (rhGal-9) was treated to co-culturing condition, and then, flow cytometry assay was conducted for analyzing the cytotoxic activity of M1-differentiated THP-1 cells. Related inflammatory cytokines (IL-1β, IL-10, TNF-α, IL-6, IL-12, IL-23, and TGF-β) and related enzymes (iNOS and Arginase 1) were analyzed by qPCR and Western blot assay. To identify the shift in M1/M2-differentiated THP-1 cells, expression levels of CCR7, CD163, iNOS, and Arginase 1 and population of M2 marker positive cells were analyzed. Results The expression levels of pro-inflammatory cytokines in M1-differentiated THP-1 cells co-cultured with hGal-9-expressing porcine kidney epithelial cells were decreased, but not in co-cultured THP-1 cells. However, the expression levels of anti-inflammatory cytokines were also increased in co-cultured M1-differentiated THP-1 cells. The cytotoxicity effect of M1-differentiated THP-1 cells on transgenic cells was decreased while the expression levels of anti-inflammatory cytokines and M2 macrophages-related molecules were increased. M2 differentiation program was turned on while M1 program was turned down by enhancing the phosphorylation levels of Akt and PI3K and the expression level of PPAR-γ. Due to these changes, differentiation of M2 program was enhanced in cells co-cultured with hGal-9. Conclusions These data suggested that hGal-9 has a reduction in M1-differentiated THP-1 cell cytotoxic activity-related acute immune rejection in pig-to-human xenotransplantation in addition to its role in lymphoid lineage immune cell regulation.
  • Sensitive methods and improved screening strategies are needed for the detection of pig viruses
  • D-dimer level, in association with humoral responses, negatively correlates with survival of porcine islet grafts in non-human primates with immunosuppression
    Background Several immunosuppression (IS) regimens achieve long-term graft survival in non-human primates (NHPs) after porcine islet transplantation (PITx), but their success rates vary. To understand the mechanism of graft loss, we investigated the relationships between graft survival and humoral or inflammatory responses for maintenance IS in NHPs after PITx. Methods Islets purified from adult wild-type pigs were intraportally transplanted into streptozotocin-induced diabetic rhesus monkeys. Three monkeys received an IS regimen without anti-CD154 monoclonal antibody (mAb, transplant [Tpl]-control) and 11 received IS with anti-CD154 mAb (Tpl-aCD154). Blood samples were obtained weekly from the recipients until graft function ceased and weekly from three healthy monkeys (non-Tpl-control) for 6 months. Levels of D-dimer, C-reactive protein (CRP), and anti-Galα1,3Gal (Gal) IgG, IgG1, IgG2, and IgM were measured. Liver biopsy sections were immunostained for fibrin, insulin, and human CD31. Results Tpl-control monkeys had higher time-weighted average levels (levelstwavrg) of Δanti-Gal IgG (Δ, difference from level at day 0) and D-dimer than Tpl-aCD154 or non-Tpl-control. The levelstwavrg of Δanti-Gal IgG, IgG1, IgG2, and IgM did not differ between Tpl-aCD154 and non-Tpl-control. The levelstwavrg of D-dimer and Δanti-Gal IgG2 negatively correlated with graft survival. Liver biopsy sections revealed many spots of fibrin deposition inside islet grafts that were well vascularized by human CD31-positive cells. Level of D-dimer positively correlated with Δanti-Gal IgG1 in Tpl-control and with Δanti-Gal IgG2 in Tpl-aCD154. Conclusions Intravascular coagulation, in association with immune responses against xenografts, may partly contribute to loss of islet grafts in NHPs after PITx.
  • Generation of chimeric minipigs by aggregating 4- to 8-cell-stage blastomeres from somatic cell nuclear transfer with the tracing of enhanced green fluorescent protein
    Background Blastocyst complementation is an important technique for generating chimeric organs in organ-deficient pigs, which holds great promise for solving the problem of a shortage of organs for human transplantation procedures. Porcine chimeras have been generated using embryonic germ cells, embryonic stem cells, and induced pluripotent stem cells; however, there are no authentic pluripotent stem cells for pigs. In previous studies, blastomeres from 4- to 8-cell-stage parthenogenetic embryos were able to generate chimeric fetuses efficiently, but the resulting fetuses did not produce live-born young. Here, we used early-stage embryos from somatic cell nuclear transfer (SCNT) to generate chimeric piglets by the aggregation method. Then, the distribution of chimerism in various tissues and organs was observed through the expression of enhanced green fluorescent protein (EGFP). Methods Initially, we determined whether 4- to 8- or 8- to 16-cell-stage embryos were more suitable to generate chimeric piglets. Chimeras were produced by aggregating two EGFP-tagged Wuzhishan minipig (WZSP) SCNT embryos and two Bama minipig (BMP) SCNT embryos. The chimeric piglets were identified by coat color and microsatellite and swine leukocyte antigen analyses. Moreover, the distribution of chimerism in various tissues and organs of the piglets was evaluated by EGFP expression. Results We found that more aggregated embryos were produced using 4- to 8-cell-stage embryos (157/657, 23.9%) than 8- to 16-cell-stage embryos (100/499, 20.0%). Thus, 4- to 8-cell-stage embryos were used for the generation of chimeras. The rate of blastocysts development after aggregating WZSP with BMP embryos was 50.6%. Transfer of 391 blastocysts developed from 4- to 8-cell-stage embryos to five recipients gave rise to 18 piglets, of which two (11.1%) were confirmed to be chimeric by their coat color and microsatellite examination of the skin. One of the chimeric piglets died at 35 days and was subsequently autopsied, whereas the other piglet was maintained for the following observations. The heart and kidneys of the dead piglet showed chimerism, whereas the spinal cord, stomach, pancreas, intestines, muscle, ovary, and brain had no chimerism. Conclusions To our knowledge, this is the first report of porcine chimeras generated by aggregating 4- to 8-cell-stage blastomeres from SCNT. We detected chimerism only in the skin, heart, and kidneys. Collectively, these results indicate that aggregation using 4- to 8-cell-stage SCNT embryos offers a practical approach for producing chimeric minipigs. Furthermore, it also provides a potential platform for generating interspecific chimeras between pigs and non-human primates for xenotransplantation.
  • Improvement of isolated caprine islet survival and functionality in vitro by enhancing of PDX1 gene expression
    Background Dead islets replaced with viable islets are a promising offer to restore normal insulin production to a person with diabetes. The main reason for establishing a new islet source for transplantation is the insufficiency of human donor pancreas while using xenogeneic islets perhaps assists this problem. The expression of PDX1 is essential for the pancreas expansion. In mature β-cells, PDX1 has several critical roles such as glucose sensing, insulin synthesis, and insulin secretion. In this study, we aimed to evaluate the expression of pancreatic duodenal homeobox-1 (PDX1) in treated caprine islets in culture and to assess the protective effects of antioxidant factors on the PDX1 gene in cultured caprine islets. Materials and methods Purified islets were treated with serum-free, serum, IBMX, tocopherol, or IBMX and tocopherol media. Quantitative polymerase chain reaction and Western blotting were carried out to compare the expression levels of PDX1 in treated purified islets cultured with different media. Results Islets treated with IBMX/tocopherol exhibited the highest fold change in the relative expression of PDX1 on day 5 post-treatment (relative expression: 6.80±2.08), whereas serum-treated islets showed the lowest fold changes in PDX1 expression on day 5 post-treatment (0.67±0.36), as compared with the expression on day 1 post-treatment. Insulin production and viability tests of purified islets showed superiority of islet at supplemented serum-free media with IBMX/tocopherol compared to other cultures (53.875%±1.59%). Conclusions Our results indicated that supplemented serum-free medium with tocopherol and IBMX enhances viability and PDX1 gene expression compared to serum-added and serum-free media.
  • Anti-CD40 antibody-mediated costimulation blockade promotes long-term survival of deep-lamellar porcine corneal grafts in non-human primates
    Background Corneal xenotransplantation is an effective solution for the shortage of human donor corneas, and the porcine cornea may be a suitable candidate for the donor cornea because of its optical similarity with humans. However, it is necessary to administer additional immunosuppressants to overcome antigenic differences. We aimed to investigate the feasibility of porcine corneas with anti-CD40 antibody-mediated costimulation blockade in a clinically applicable pig-to-non-human primate corneal xenotransplantation model. Methods Five Chinese rhesus macaques underwent deep-lamellar corneal transplantation using clinically acceptable sized (7.5 mm diameter) porcine corneal grafts. The anti-CD40 antibody was intravenously administered on a programmed schedule. Graft survival, central corneal thickness, and intraocular pressure were evaluated. Changes in effector and memory T and B cell subsets and anti-αGal and donor-specific antibodies were investigated in the blood, and the changes in complement levels in the aqueous humor and blood were evaluated. Memory cell profiles in the anti-CD40 antibody-treated group were compared with those from the anti-CD154 antibody-treated group or rejected controls presented in our previous report. The changes in anti-αGal, non-αGal, and donor-specific antibodies after 6 months were compared with baseline values. Results Anti-CD40 antibody-mediated costimulation blockade resulted in the successful survival of xenocorneal grafts (>389, >382, >236, >201, and >61 days), with 80% reaching 6 months of survival. Injection of anti-CD40 antibody considerably reduced the infiltration of inflammatory cells into the grafts and significantly blocked the complement response in the aqueous humor (P=.0159, Mann-Whitney U test). Systemic expansion of central or effector memory T cells was abrogated in the anti-CD40 antibody-treated primates compared with those in the rejected controls (P<.05, Mann-Whitney U test) or those in the anti-CD154 antibody-treated primates (P>.05, Mann-Whitney U test). The levels of anti-αGal, non-αGal, and donor-specific antibodies at 6 months were not significantly increased compared with baseline levels (P>.05, Wilcoxon signed rank test). Conclusions An anti-CD40 antibody-mediated blockade appears to be effective immunosuppressive approach for porcine corneal deep-lamellar xenotransplantation in primates.
  • The potentiating effect of hTFPI in the presence of hCD47 reduces the cytotoxicity of human macrophages
    Background In pig-to-human xenotransplantation, hyperacute rejection of pig organs could be overcome by the production of α1,3-galactosyltransferase knockout pigs. However, macrophage-mediated acute rejection is another obstacle that needs to be overcome. Among the various candidate genes involved in acute rejection, CD47 inhibits monocyte/macrophage-mediated phagocytosis by identifying the CD47 signal regulatory protein alpha (SIRP-α) as self/non-self. Tissue factor pathway inhibitor (TFPI) is involved in the regulation of the coagulation pathway and is able to bind to another ligand of CD47, thrombospondin-1 (TSP-1). When TSP-1 binds to CD47, phagocytosis in macrophages is increased. Methods The 2A peptide system was used to establish pig kidney cells (PK15) simultaneously expressing human CD47 and human TFPI, and they were cultured with activated THP-1 cells. After staining with 7-aminoactinomycin D, flow cytometry analysis was carried out. TFPI siRNA analysis and recombinant human TFPI (rhTFPI) treatment were performed to determine the potentiating effect of TFPI on pig cells for activated THP-1 cells in the presence of CD47. Related inflammatory cytokines produced by activated THP-1 cells were analyzed using qPCR and Western blot technique. In addition, the tyrosine phosphorylation level of SIRP-α in activated THP-1 cells was analyzed using immunoprecipitation and Western blot. Results hCD47/hTFPI-PK15 cells survived better than hCD47-PK15, hTFPI-PK15, or normal PK15 cells on cytotoxicity tests using activated THP-1 cells. TSP-1, derived from these activated THP-1 cells, served as a mediator for this enhancing effect, and it also played a role in activated adherent peripheral blood mononuclear cells (PBMCs). The tyrosine phosphorylation level of SIRP-α in activated THP-1 cells was further increased in the case of co-expression of CD47/TFPI than in individual non-expression or expression of CD47 or TFPI alone. Conclusions When hCD47 was expressed, the expression of hTFPI leaded to tyrosine phosphorylation of SIRP-α in activated THP-1 cells via hTSP-1 inhibition, and consequently, it might improve the effect of hCD47-SIRP-a signaling.
  • Testing of microencapsulated porcine hepatocytes in a new model of fulminant liver failure in baboons
    Background There is no standard therapy for acute liver failure. Hepatocyte transplantation has been proposed for temporary liver function support, while the injured liver regenerates or while waiting for transplantation. We have previously shown such efficacy for microencapsulated porcine hepatocytes in mice with fulminant liver failure. We aimed to establish a large animal model for fulminant liver failure to assess the efficacy of microencapsulated porcine hepatocytes in temporary liver function support. Methods The model was developed in baboons; for testing microencapsulated hepatocytes, the best condition was 75% hepatectomy and 60 min warm ischemia time. Fulminant liver failure was characterized by steep increases in liver biochemical parameters, severe steatosis, and massive hepatocyte necrosis during the first 10 days. Hepatocytes from miniature swine were microencapsulated in alginate-poly-l-lysine microspheres, and transplanted intraperitoneally immediately after hepatectomy and warm ischemia (80-120 mL packed hepatocytes in 200-350 mL microspheres, about 30%-50% of the baboon's native liver volume). Results In the control group, three of five animals were sacrificed after 6-10 days because of fulminant liver failure, and two of five animals recovered normal liver function and survived until elective euthanasia (28 days). In the treatment group of four animals, one animal developed liver failure but survived to 21 days, and three animals recovered completely with normal liver function. Conclusions The results indicate that microencapsulated porcine hepatocytes provide temporary liver function support in baboons with fulminant liver failure. These data support development of this cell therapy product toward clinical trials in patients with acute liver failure.
  • Hemodynamic and perioperative management in two different preclinical pig-to-baboon cardiac xenotransplantation models
    Background The perioperative phase of preclinical cardiac xenotransplantations significantly affects the experimental outcome. Moderate or even severe hemodynamic and respiratory impairment occurs frequently in baboons after receiving a cardiac transplant. The perioperative management of such postoperative instability is very demanding, especially in the experimental setting. We compared perioperative changes of hemodynamic and laboratory findings during orthotopic and heterotopic thoracic cardiac xenotransplantations and describe our monitoring, treatment and intensive care. Methods Twenty-eight pig-to-baboon cardiac xenotransplantations were performed using either the orthotopic (oHTx, n=5) or heterotopic thoracic (htHTx; n=23) technique. In both techniques, cardioplegia and an intraoperative cardiopulmonary bypass (CPB) were required. Preoperatively, intensive care (eg, transfusions, catecholamine therapy) was provided and fast extubation was targeted. A central venous catheter, a femoral arterial thermodilution catheter, a telemetric pressure transmitter and transthoracic echocardiography were used to monitor the animal. Baboon jackets with a tethering system were used to continuously apply medication postoperatively and permit blood sampling, also after extubation of the animal and transfer into the cage. Perioperative survival, hemodynamics, catecholamine doses, respiratory function and weaning from respirator were compared. Perioperative organ damage was evaluated based on laboratory findings 12 hours after transplantation. Results Recipients could be weaned from CPB in the 20 htHTx and all five oHTx experiments, and three htHTx procedures were terminated during the operation. The time of cardiopulmonary bypass was significantly lower in the heterotopic group (oHTx median 171 [157-193] minutes; htHTx median 144 [100-190] minutes; P=.02). In 17 htHTx procedures, no inotropics were used, whereas epinephrine had to be administered in four of the five oHTx experiments; the mean time of catecholamine support was longer in the oHTx group (oHTx 972±348 minutes vs htHTx 111±92 minutes; P<.01). After htHTx, weaning off the respirator was possible in 19 of 20 cases (one died due to pneumothorax). After oHTx, three of the five baboons could be weaned off the respirator; in these cases, the arterial saturation was higher compared with the extubated baboons after htHTx (oHTx 99±1% vs htHTx 91±4%, P=.01). Intraoperative blood loss was similar between the two groups, and hemostasis was impaired after all procedures, but relevant postoperative bleeding never occurred. Conclusion Intensive intra- and postoperative monitoring and care is required in both transplantation techniques as a requirement for successful weaning from CPB and respirator. After htHTx, the animals needed less catecholamines and were hemodynamically more stable. Even though pulmonary function was often impaired after htHTx, weaning from the respirator and extubation was more successful in this group.
  • Issue Information
  • Thomas E. Starzl, MD, PhD, 1926–2017
  • Early clinical xenotransplantation experiences—An interview with Thomas E. Starzl, MD, PhD
    Dr Thomas E. Starzl, who died on March 4, 2017, was one of the great pioneers of organ transplantation. He was also a pioneer in the field of xenotransplantation. In 1964, he carried out baboon kidney transplants in six patients with terminal renal disease for whom no living or deceased donor became available; graft survival was for 19-60 days, the grafts being lost largely through continuous complement activation. Between 1966 and 1974, he carried out one ex vivo liver perfusion and three orthotopic liver transplants using chimpanzees as sources of organs; graft survival was for <14 days. In 1992 and 1993, his team carried out baboon liver transplantation in two patients with cirrhosis from hepatitis B infection; graft survival was for 70 and 26 days, respectively. This early clinical experience is briefly discussed. Toward the end of his life, Dr Starzl was somewhat disillusioned by what he considered excessive regulation of medical research in the United States and believed that new advances were now likely to take place in countries such as China, where the regulatory framework is less developed.
  • Thomas Starzl—Visionary and xenotransplantation pioneer: Commentary from the International Xenotransplant Association Vanguard Committee
  • Antibody formation towards porcine tissue in patients implanted with crosslinked heart valves is directed to antigenic tissue proteins and αGal epitopes and is reduced in healthy vegetarian subjects
    Background Glutaraldehyde-fixed porcine heart valves (ga-pV) are one of the most frequently used substitutes for insufficient aortic and pulmonary heart valves which, however, degenerate after 10-15 years. Yet, xeno-immunogenicity of ga-pV in humans including identification of immunogens still needs to be investigated. We here determined the immunogenicity of ga-pV in patients with respect to antibody formation, identity of immunogens and potential options to reduce antibody levels. Methods Levels of tissue-specific and anti-αGal antibodies were determined retrospectively in patients who received ga-pV for 51 months (n=4), 25 months (n=6) or 5 months (n=4) and compared to age-matched untreated subjects (n=10) or younger subjects with or without vegetarian diet (n=12/15). Immunogenic proteins were investigated by Western blot approaches. Results Tissue-specific antibodies in patients were elevated after 5 (1.73-fold) and 25 (1.46-fold, both P<.0001) months but not after 51 months, whereas anti-Gal antibodies were induced 4.75-fold and 3.66-fold after 5 and 25 months (both P<.0001) and still were significantly elevated after 51 months (2.85-fold, P<.05). Western blots of porcine valve extracts with and without enzymatic deglycosylation revealed strong specific staining at ≈65 and ≈140 kDa by patient sera in either group which were identified by 2D Western blots and mass spectrometry as serum albumin and collagen 6A1. Vegetarian diet reduced significantly (0.63-fold, P<.01) the level of pre-formed αGal but not of tissue-specific antibodies. Conclusion Immune response in patients towards ga-pV is induced by the porcine proteins albumin and collagen 6A1 as well as αGal epitopes, which seemed to be more sustained. In contrast, in healthy young subjects pre-formed anti-Gal antibodies were reduced by a meat-free nutrition.
  • Transplantation of hepatocytes from genetically engineered pigs into baboons
    Background Some patients with acute or acute-on-chronic hepatic failure die before a suitable human liver allograft becomes available. Encouraging results have been achieved in such patients by the transplantation of human hepatocyte progenitor cells from fetal liver tissue. The aim of the study was to explore survival of hepatocytes from genetically engineered pigs after direct injection into the spleen and other selected sites in immunosuppressed baboons to monitor the immune response and the metabolic function and survival of the transplanted hepatocytes. Methods Baboons (n=3) were recipients of GTKO/hCD46 pig hepatocytes. All three baboons received anti-thymocyte globulin (ATG) induction and tapering methylprednisolone. Baboon 1 received maintenance immunosuppressive therapy with tacrolimus and rapamycin. Baboons 2 and 3 received an anti-CD40mAb/rapamycin-based regimen that prevents sensitization to pig solid organ grafts. The baboons were euthanized 4 or 5 weeks after hepatocyte transplantation. The baboon immune response was monitored by the measurement of anti-non-Gal IgM and IgG antibodies (by flow cytometry) and CFSE-mixed lymphocyte reaction. Monitoring for hepatocyte survival and function was by (i) real-time PCR detection of porcine DNA, (ii) real-time PCR for porcine gene expression, and (iii) pig serum albumin levels (by ELISA). The sites of hepatocyte injection were examined microscopically. Results Detection of porcine DNA and porcine gene expression was minimal at all sites of hepatocyte injection. Serum levels of porcine albumen were very low—500-1000-fold lower than in baboons with orthotopic pig liver grafts, and approximately 5000-fold lower than in healthy pigs. No hepatocytes or infiltrating immune cells were seen at any of the injection sites. Two baboons (Baboons 1 and 3) demonstrated a significant increase in anti-pig IgM and an even greater increase in IgG, indicating sensitization to pig antigens. Discussion and Conclusions As a result of this disappointing experience, the following points need to be considered. (i) Were the isolated pig hepatocytes functionally viable? (ii) Are pig hepatocytes more immunogenic than pig hearts, kidneys, artery patch grafts, or islets? (iii) Does injection of pig cells (antigens) into the spleen and/or lymph nodes stimulate a greater immune response than when pig tissues are grafted at other sites? (iv) Did the presence of the recipient's intact liver prevent survival and proliferation of pig hepatocytes? (v) Is pig CD47-primate SIRP-α compatibility essential? In conclusion, the transplantation of genetically engineered pig hepatocytes into multiple sites in immunosuppressed baboons was associated with very early graft failure. Considerable further study is required before clinical trials should be undertaken.
  • Human IL-6, IL-17, IL-1β, and TNF-α differently regulate the expression of pro-inflammatory related genes, tissue factor, and swine leukocyte antigen class I in porcine aortic endothelial cells
    Background Pro-inflammatory cytokines play important pathological effects in various diseases and allotransplantation; however, their pathological role in xenotransplantation remains elusive. In pig-to-human cell or organ transplantation, whether porcine cells or organs are activated by human cytokines or not as an important question needs to be investigated. Methods We investigated the effect of human IL-6, IFN-γ, IL-17, IL-1β, and TNF-α in xenotransplantation using several in vitro models and porcine aortic endothelial cells (PAECs) as target cells. The downstream signaling pathways activated by these cytokines were studied with Western blotting, the regulation of the pro-inflammatory related genes and pro-coagulation factor were assessed using real-time PCR or enzyme-linked immunosorbent assay, and swine leukocyte antigen (SLA) class I and SLA class II DR were analyzed by flow cytometry. Results We found that NF-κB and mitogen-activated protein kinases (MAPKs) were activated by recombinant human IL-17 (rhIL-17), rhIL-1β, and rhTNF-α, while rhIL-6 activated signal transducer and activator of transcription 3 (STAT3) in PAECs. The adhesion molecules (E-selectin, VCAM-1, and ICAM-1), pro-inflammatory gene (IL-6), chemokines (IL-8 and MCP-1), and the pro-coagulation factor (tissue factor) were induced by rhIL-17, rhIL-1β, and rhTNF-α, while rhIL-6 only increased the expression of MCP-1 and tissue factor. Using flow cytometry analysis, SLA class I was upregulated in PAECs after exposure to rhIL-1β and rhTNF-α, but not rhIL-6 or rhIL-17, whereas SLA class II DR could not be induced by rhIL-6, rhIL-17, rhIL-1β, or rhTNF-α, although it could by recombinant porcine IFN-γ (rpIFN-γ). Although activation of PAECs by rhIL-17 alone was not strong, rhIL-17 combined with rhTNF-α amplified the expression of E-selectin, IL-6, and IL-8. Unexpectedly, we found that tocilizumab, a humanized anti-human IL-6 receptor antibody, could not block rhIL-6-mediated STAT3 activation in PAECs. Human IFN-γ could not activate STAT1 or induce the downstream gene expression in PAECs, which was consistent with a previous report. Conclusion In conclusion, our data suggest that human IL-6, IL-17, IL-1β, and TNF-α significantly activate PAECs and are likely to promote inflammation and coagulation reaction in response to xenograft.
  • Gastrostomy tube placement for long-term oral drug administration in non-human primates
    Background Non-human primates (NHPs) are often used as recipients in preclinical transplantation research that in most cases involves administration of various drugs including immunosuppressants. Long-term oral drug administration, particularly tacrolimus, is challenging in the transplant recipient NHPs. Oral drug administration method using the mixture of drug and fruit juice has been used in NHPs, but this is not always effective in all monkeys. To those monkeys who are poorly compliant, oral drug administration in restraint or administration using gastrostomy tube should be necessary. The aim of this study was to compare the efficacy of between oral drug administration in restraint and administration using gastrostomy tube and to report complications and solutions to overcome the problems related to gastrostomy tube for long-term oral drug dosing in rhesus monkeys. Methods Fifteen of 4- to 5-year-old male and female healthy rhesus monkeys weighing 5.0-6.8 kg were used as recipients for porcine pancreatic islet transplantation. Oral drug administration in restraint was used for four monkeys, and gastrostomy tube was placed to other 11 monkeys (8-French Feeding tube, n=6; Tri-Funnel Replacement Gastrostomy tube, n=5). Oral immunosuppressive drugs such as sirolimus and tacrolimus were administered through the tube. The efficacy and the extent of ease for administration and related complications were compared between two groups. Results and Conclusions The complication of gastrostomy included a transient inflammation in the skin and peritonitis caused by a leakage around implantation site (one case), which could be overcome by changing suture method and tube type to interlocking box suture and Tri-Funnel Replacement Gastrostomy tube, respectively. Despite these complications, oral drug administration using gastrostomy tube allowed us to perform accurate dosage of drug administration and to reduce the stress that both the monkey and the researcher may experience. Taken together, this study showed that gastrostomy tube placement is a better alternative to oral drug administration in restraint for long-term oral drug administration in rhesus monkeys who tend to refuse to eat the mixture of drug and fruit juice.
  • Immunological and physiological observations in baboons with life-supporting genetically engineered pig kidney grafts
    Background Genetically engineered pigs could provide a source of kidneys for clinical transplantation. The two longest kidney graft survivals reported to date have been 136 and 310 days, but graft survival >30 days has been unusual until recently. Methods Donor pigs (n=4) were on an α1,3-galactosyltransferase gene-knockout (GTKO)/human complement regulatory protein (CD46) background (GTKO/CD46). In addition, the pigs were transgenic for at least one human coagulation regulatory protein. Two baboons received a kidney from a six-gene pig (GroupA) and two from a three-gene pig (GroupB). Immunosuppressive therapy was identical in all four cases and consisted of anti-thymoglobulin (ATG)+anti-CD20mAb (induction) and anti-CD40mAb+rapamycin+corticosteroids (maintenance). Anti-TNF-α and anti-IL-6R mAbs were administered to reduce the inflammatory response. Baboons were followed by clinical/laboratory monitoring of immune/coagulation/inflammatory/physiological parameters. At biopsy or euthanasia, the grafts were examined by microscopy. Results The two GroupA baboons remained healthy with normal renal function >7 and >8 months, respectively, but then developed infectious complications. However, no features of a consumptive coagulopathy, eg, thrombocytopenia and reduction of fibrinogen, or of a protein-losing nephropathy were observed. There was no evidence of an elicited anti-pig antibody response, and histology of biopsies taken at approximately 4, 6, and 7 months and at necropsy showed no significant abnormalities. In contrast, both GroupB baboons developed features of a consumptive coagulopathy and required euthanasia on day 12. Conclusions The combination of (i) a graft from a specific six-gene genetically modified pig, (ii) an effective immunosuppressive regimen, and (iii) anti-inflammatory therapy prevented immune injury, a protein-losing nephropathy, and coagulation dysfunction for >7 months. Although the number of experiments is very limited, our impression is that expression of human endothelial protein C receptor (±CD55) in the graft is important if coagulation dysregulation is to be avoided.
  • Transgenic expression of human leukocyte antigen-E attenuates GalKO.hCD46 porcine lung xenograft injury
    Background Lung xenografts remain susceptible to loss of vascular barrier function within hours in spite of significant incremental advances based on genetic engineering to remove the Gal 1,3-αGal antigen (GalTKO) and express human membrane cofactor protein (hCD46). Natural killer cells rapidly disappear from the blood during perfusion of GalTKO.hCD46 porcine lungs with human blood and presumably are sequestered within the lung vasculature. Here we asked whether porcine expression of the human NK cell inhibitory ligand HLA-E and β2 microglobulin inhibits GalTKO.hCD46 pig cell injury or prolongs lung function in two preclinical perfusion models. Methods Lungs from pigs modified to express GalTKO.hCD46 (n=37) and GalTKO.hCD46.HLA-E (n=5) were harvested and perfused with human blood until failure or elective termination at 4 hours. Airway pressures and pulmonary artery hemodynamics were recorded in real time. Blood samples were also collected throughout the experiment for analysis. Porcine aortic endothelial cells (PAECs) from each genotype were cultured in monolayers in microfluidic channels and used in fluorescent cytotoxicity assays using human NK cells. Results HLA-E expression on GalTKO.hCD46 PAECs was associated with significantly decreased antibody-dependent and antibody-independent NK-mediated cytotoxicity under in vitro conditions simulating physiologic shear stress. Relative to GalTKO.hCD46 pig lungs perfused with human blood on an ex vivo platform, additional expression of HLA-E increased median lung survival (>4 hours, vs 162 minutes, P=.012), and was associated with attenuated rise in pulmonary vascular resistance, and decreased platelet activation and histamine elaboration. As expected, HLA-E expression was not associated with a significant difference in NK cell adhesion to endothelial cells in vitro, or NK cell and neutrophil sequestration during organ perfusion. Conclusions We conclude human NK cell activation contributes significantly to GalTKO.hCD46 pig endothelial injury and lung inflammation and show that expression of HLA-E is associated with physiologically meaningful protection of GalTKO.hCD46 cells and organs exposed to human blood.
  • Therapeutic regulation of systemic inflammation in xenograft recipients
    Inflammation is known to preclude tolerance after transplantation. We have previously shown that systemic inflammation in xenograft recipients (SIXR) precedes activation of coagulation in the absence of T cell responses. Accordingly, SIXR may amplify innate and adaptive immune responses against xenografts after pig-to-primate xenotransplantation, even with efficient immunosuppressive therapy. We evaluated the impact of anti-inflammatory agents on pro-inflammatory cytokines and chemokines in pig artery patch and heart xenograft recipients. Baboons received an artery patch (Group1, n=8) or heart (Group2, n=4) from genetically engineered pigs. All baboons received lymphodepletion with thymoglobulin (ATG) and costimulation blockade-based immunosuppression (anti-CD40 and/or CTLA4Ig). In Group1, baboons received either (i) no anti-inflammatory agents (n=2), (ii) cobra venom factor (CVF, n=2), (iii) α1-antitrypsin (AAT, n=2), or (iv) interleukin (IL)-6 receptor antagonist (IL-6RA, n=2). In Group2, all baboon received corticosteroids, either without (n=2) or with (n=2) IL-6RA. Serum IFN-γ, TNF-α, IL-1β, IL-17, IL-6, IL-8, MCP-1, and sCD40L levels were measured by Luminex. Fibrinogen, D-dimers, and C-reactive protein (C-RP) were also measured. Recipient baboon T cell proliferation was evaluated by mixed lymphocyte reaction (MLR) before and after transplantation. Pig and baboon tissue factor (TF) mRNA levels in heart xenografts were measured by RT-PCR. In no recipient was a marked increase in T cell response to pig cells observed after transplantation. In Groups 1 and 2, post-transplantation levels of IFN-γ, TNF-α, IL-1β, and IL-17 remained comparable to or lower than pre-transplant levels, except in one heart recipient that succumbed to CMV infection. In Group1, when no anti-inflammatory agent was administered, post-transplant levels of IL-6, IL-8, and MCP-1 were elevated. After CVF, IL-6, IL-8, and MCP-1 remained low. After IL-6RA, IL-6 and MCP-1 were elevated. After AAT, IL-8 was elevated. sCD40L became elevated intermittently in most recipients irrespective of the administered anti-inflammatory agent. In Group2, IL-6 was transiently elevated, particularly after IL-6RA administration. MCP-1 gradually increased by 2 months in Group2 recipients. sCD40L generally remained low except in one recipient. In Group1 and Group2 recipients, C-RP levels were elevated except after IL-6RA administration, while D-dimers were elevated regardless of administration of anti-inflammatory agent. In Group2, pig TF mRNA levels were increased in heart xenografts compared to naive pig hearts, irrespective of IL-6 receptor antagonist administration. Additionally, baboon TF mRNA levels were detectable in heart xenografts, but not in naive pig hearts. Some pro-inflammatory cytokines and chemokines are elevated in xenograft recipients, even with efficient T cell-directed immunosuppressive therapy. Persistent elevation of D-dimers, and individual cytokines and chemokines suggest a continuous inflammatory response, despite administration of anti-inflammatory agents. Systemic administration of combined anti-inflammatory agents as well as complement regulation may be essential to prevent SIXR after xenotransplantation.
  • Xenotransplantation literature update, January/February 2017


Documento sin título

Aviso para pacientes:
Esta página contiene información urológica dirigida a profesionales de la sanidad.
Si tiene algún problema relacionado con esta patología,
consulte con su urólogo o médico de familia.
Si desea información diseñada para pacientes y público general. puede visitar:

Portal de Información Urológica para Pacientes



Carlos Tello Royloa


Actualizada el: 08-Abr-2013